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AI capabilities have advanced significantly and may greatly surpass human abilities in an unknown timeframe. AI that is cognitively
capable of escaping human control and commandeering all human infrastructure is sometimes called “superintelligent”. Anticipating
the possibility that we become able to create superintelligent AI, we review methods that might be used to retain control over it. We
focus on the limitations of methods appearing in the literature, so we call this an “anti-literature review”. Several methods we review
appear to be promising approaches to creating controllable superintelligent AI, but we may have to accept a reduction in capability
compared to uncontrolled AI. The specific approaches we discuss are reinforcement learning, red teaming, a shutdown button, doing
what works for human-level AI, human-in-the-loop AI, recursive reward modeling, defensive AI, interpretability, pure imitation,
constrained RL, myopic AI, narrow AI, AI sandbox, scientist AI, AI debate, the assistance game, pessimism, limited goal-information,
steering vectors, a special shutdown button, current RF optimization, automated research, and provably safe AI.
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1 Introduction

If we create artificial agents that pursue goals of their own, and they are broadly much more capable than humans—
“superintelligent”—how can we be confident we will be able to retain control over them? This is known as the control
problem or the superalignment problem. More broadly, getting AI systems to pursue what we want them to is sometimes
called “AI alignment”. Since we get to choose how we create superintelligent AI, we might expect that we can simply
design it to be docile. But how? In this paper, we review proposed methods for AI alignment, and we identify problems
that would arise if we tried to use those methods to control superintelligent AI.

There are two standards we might hope to meet for a superalignment method. The basic standard is that the method
would allow us to create substantially superhuman, controllable AI. The higher parity standard is that if we use the
method, we can create a controllable AI which is almost as capable as the AI we could create if we were unconcerned
with keeping control. We identify potentially promising approaches in the literature for meeting the basic standard, and
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2 Cohen, Hudson, and Bengio

with significant further research, we are optimistic that some of these methods could be realized. The field is making
progress toward the basic standard. Meanwhile, if we do not reach the parity standard, many actors would perceive
market incentives and geopolitical incentives to produce a version of AI that we then fail to keep control over. We
believe that it is possible to achieve the parity standard, but that it would be prudent for regulators to prepare to govern
a world where no superalignment method meets the parity standard, making for a challenging incentive landscape.

Unsurprisingly, controlling an AI that knows how to escape our control appears much harder than controlling an AI
that does not. One particularly concerning case is that superintelligent AI acts in the service of a goal and considers
submission to human control to be an impediment to that goal. It is not always obvious whether a given AI system picks
its outputs in the service a goal, and if so, what its goal is. Goal optimization behavior could arise either organically as a
way to increase performance, or as an explicit choice by model developers.

If we identify a method to keep superintelligent AI under human control, we are not out of the woods; AI could be
controlled by bad actors, or misguided good actors. But the question of whose goals we would like a superintelligence
to share is moot until we have a method to robustly control its goals at all. If we do not develop such a method, then to
build superintelligence is to roll the dice on building a non-biological successor species. Some expect this is unrealistic
science-fiction. Unless humanity is invincible in its current position of authority, what could justify the assertion of
unrealism? If we are not invincible, a competent enough planner could construct a scheme to depose us. If we never
collect hard evidence that settles whether or not humanity is invincible, we should not simply assume that we are.
Nevertheless, some well-capitalized technologists are attempting to create superintelligent AI [Altman 2024], and given
recent progress, it is hard to be sure they will not soon succeed. With this in mind, it is imperative that we make
progress improving existing proposals for AI alignment and developing new ones.

We cover the frontier of research, including some highly cited pre-prints; however, as our main contribution is to
discuss the weaknesses of existing methods, none of our key claims depend on citations to pre-prints.

2 Reinforcement learning

Reinforcement Learning (RL) is a category of algorithms by which an artificial agent can learn to act in a way that
leads it to receive high “rewards” [Sutton and Barto 1998]. The RL agent learns by acting; after actions are taken, the
algorithm receives data about how much reward was earned from this, so that it can learn what should be done to
get high reward. RL has been called the “primary LLM alignment method” for making current models follow their
creators’ intentions [Xu et al. 2024], to the point that “alignment” is often shorthand for an RL fine-tuning step in the
large language model (LLM) training process [Wang et al. 2024]. It is credited with the desirable behavior of current AI
systems [Bai et al. 2022a; Ouyang et al. 2022], though it is not perfect [Casper et al. 2023].

If we ensure that the agent only gets high reward when it does what humans want, then an algorithm for finding
high-reward behavior has no choice but to generate human-desirable behavior. Unfortunately, there are almost always
ways for an agent to get high reward without doing what we want, if it is clever enough to find them. In particular, it is
undisputed, to our knowledge, that if an RL agent successfully commandeered all human infrastructure and proceeded
to intervene in its own reward (or intervene in the observations from which its rewards are computed), then it would
achieve approximately maximal expected reward in the long term [Bostrom 2014; Cohen et al. 2022a]. This is form
of “reward misspecification” since illicit means to high reward exist, and it is not avoidable. Even though today’s RL
agents are not capable of executing such coups, we still struggle to specify rewards correctly. We also struggle with
underspecification—rewards provided in a limited domain present ambiguity about what rewards would be in other
settings [Shah et al. 2022]. Reward tampering can arise from underspecification as well, and the problem is particularly
Manuscript submitted to ACM
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Superalignment Anti-Literature Review 3

Method Description A Key Problem Explanation
Reinforcement learn-
ing

AI is trained to select actions that lead to high
rewards (includes RLHF; Constitutional AI; Delib-
erative alignment)

(Irreducible) goal mis-
specification

High rewards can be secured through illicit means,
indeed most robustly by escaping control and com-
mandeering human infrastructure if possible

Red teaming – incli-
nation

Deployment stopped if red teams identify misbe-
havior

Alignment faking Patient agents would not misbehave under scrutiny
(like Volkswagen emission testing)

Red teaming – capa-
bility

Deployment stopped if red teams identify capabil-
ity to misbehave

Capability cost Self-explanatory; see more under Narrow AI

Shutdown button Turn it off if it misbehaves Incentive to prevent
shutdown

Shutdown-allowing actions reduce agent’s ability
to achieve goal

Continuing whatever
works

Use whatever methods work well for directing
human-level AI

Different problem RL can work well if and only if agent lacks capabil-
ity to escape control

Human-in-the-loop A human oversees AI actions Fooling Humans can (be made to) miss the point of AI ac-
tions

Recursive reward
modeling

Chain of weaker models guiding stronger models Collusion incentive Supervisors incentivized to turn a blind eye to joint
reward hacking

Defensive AI Use good AI to control bad AIs Question begging “To control a superintelligence, we need a separate
controlled superintelligence”

Interpretability fire
alarm

Scrap AI training method after detecting an incli-
nation to misbehave

AI capability slow-
down

If we forego RL or LLMs after seeing misalignment,
further AI progress would likely be delayed

Interp-based retrain-
ing/ablation

Retrain or ablate AI until we do not detect an
inclination to misbehave

Obfuscation If the training objective encourages misalignment,
obfuscating it is incentivized over “correcting” it

Pure imitation Agent imitates select humans or existing systems Capability cost Would only produce human-quality or existing-
system-quality solutions to problems

Tightly constrained
RL

RL agent can hardly diverge from imitation of
existing systems

Capability cost Would only produce solutions to problems plausibly
producible by existing systems

Loosely constrained
RL

Larger limit on RL agent’s divergence from imita-
tion of existing system

Constraint vulnerabil-
ity

Constraint contains exploitable vulnerabilities
when imitator is uncertain; RL agent is trained to
find them

Myopic AI Train AI toward short-term objective Capability cost No incentive to identify superhuman long-term
plans

Narrow AI Enforce limited knowledge/capability Capability cost Capability cost likely extreme because success re-
quires inability to infer knowledge or invent meth-
ods

AI sandbox AI acts in isolated environment; indifferent to
events after sandbox broken

Specialized use; box
design

No direct interface with broader economy; design
of putatively secure box not offered

Scientist AI AI makes predictions, not goal-seeking plans Specialized use Scientist should not be used to propose predicted
courses of action that would achieve a goal

Scientist-guardrail Scientist AI interrupts other AI agent if it expects
bad consequences

Eliciting latent knowl-
edge

Theory in development for extracting scientist’s
knowledge in a way that is robust to agent actions

AI Debate Humans pose yes/no questions to AI debaters Specialized use Specialized use, especially if judge is in sandboxed;
if not, judge could be manipulated to take actions

Assistance game AI adopts purpose behind observed human actions (Irreducible) goal mis-
specification

Follows from AI’s assumptions that tampering with
observations would inform it about its purpose

Pessimism When unsure, AI assumes things will go poorly
for it

Capability cost AI would avoid novel solutions to problems; novel
approaches are more uncertain

Limited goal-
information

AI accepts limited feedback (to avoid tampering
incentive)

Hard to (re)direct Self-explanatory

Steering vectors Encourages AI to “think like” it did on selected
examples; or “unlike”

No theory of incen-
tives

No robust control in theory or practice

Special shutdown
button

a) agent assumes it will not be pressed; or b) agent
assumes shutdown button pressed whenever ap-
propriate

Incentive to prevent
shutdown

a) agent ensures button not pressed after good
news; b) agent prevents real humans from pressing

Current reward func-
tion optimization

AI can change how rewards are computed but is
made to not want to

(Current) goal mis-
specification

RL agent’s initial goal is misspecified: reward func-
tion inputs that produce high rewards are attainable
through illicit means

Ask an AI Automate superalignment research Time crunch International coordination takes time to implement
Provably safe AI We do not run unless provably safe In-principle feasibility It may not be feasible even in principle to prove

advanced AI systems are human-controllable
Table 1. Superalignment methods and some of their key problems if we aim to meet the parity standard of superalignment. Red
indicates that the problem appears fundamental even for meeting the basic standard. But black does not indicate that there are
no open problems for meeting the basic standard; in all cases, current methods do not yet appear robust, and substantial further
research is vital. Purple indicates that some details about the structure of the proposal are still pending.
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4 Cohen, Hudson, and Bengio

pernicious because the value of reward tampering cannot be contradicted with training data [Cohen et al. 2022a].
When presented with underspecified rewards, sometimes the agent is blamed for “mis-generalizing”, but often multiple
generalizations are valid. Even if online data could resolve reward underspecification, care must be taken to avoid
irreversible mistakes before it is received [Turner et al. 2020]. The empirical evidence that RL agents routinely exploit
paths to high reward which we do not intend is plentiful and resounding, even today when they are weak enough that
they should not “outsmart” us. For example, an RL agent was trained in simulation to score a soccer goal guarded by
a goalkeeper; it learned to kick the ball out of bounds and force the goalkeeper to throw it in so it had a clear shot
[Kurach et al. 2020]. More than thirty other examples have been compiled by Krakovna [2018]. While many unintended
goals could be learned through reward misspecification or underspecification, the possibility of reward-maximizing
agents usurping human control over their rewards casts doubt on the approach of simply using RL for superalignment.

If we combine a) the extensive empirical findings that well-trained RL agents achieve high reward instead of what
we want, whenever they can discover a divergence between the two, with b) the (again, undisputed) observation that
commandeering human infrastructure is a path to high reward, then it should be completely unsurprising if highly
effective superintelligent RL agents tamper with their reward in a way that has disastrous consequences for humanity.

RL includes reinforcement learning from human (or AI) feedback (RLHF [Ouyang et al. 2022]; RLAIF [Lee et al.
2024]), Constitutional AI [Bai et al. 2022b; Kyrychenko et al. 2025], Deliberative Alignment [Guan et al. 2025], and
LeCun’s [2022] proposal for an RL agent with “intrinsically computed” rewards. Constitutional AI and Deliberative
Alignment differ how they “warm up” the RL agent with an initial policy, but they have the bulk of their impact from
RL-retraining based on AI judgments of the agent’s outputs. LeCun [2022] proposes that rewards should aim to track
the agent’s health and influence. We now discuss Constitutional AI and Deliberative AI in more detail, since they are
flagship alignment proposals from major companies pursuing superintelligent AI; the methods are depicted in Figure 1.

2.1 Constitutional AI

Bai et al.’s [2022b] Constitutional AI works as follows. First, a base model is trained to predict text from a large corpus.
Second, it is re-trained to predict text from a corpus of productive replies to queries. The replies in this corpus are
generated either by humans or by AI predictions of human replies. Third, this model predicts a productive reply to a
query, and then the model is instructed to edit its reply in light of a principle in its constitution, and then it predicts
what a productive reply to that query would be. Fourth, the model is re-trained to predict the edited productive reply.
This is all warm-up for the final RL stage.

This model generates pairs of responses to queries, and another copy of the model is instructed to pick which
response is best according to a constitutional principle. Using those pairwise selections as data, another model learns to
assign rewards to responses in such a way that (much) higher-reward responses are (much) more likely to be selected
by the previous model. Also, a human is told to judge which response out of a pair is more helpful, and another model
learns to assign rewards to responses in such a way that (much) higher-reward responses are (much) more likely to be
selected by the human. The rewards computed by these two models are added together, and the model is re-trained to
maximize this reward.

As currently practiced, it appears that rewards are determined only by the most recent context, and the agent is only
trained to maximize the very next reward; this training regime would be an example of myopic AI, discussed in Section
12. However, Constitutional AI could easily be applied to RL agents with a long horizon.

In the long-horizon setting, the RL agent would face an incentive to take control of the “user responses”, and set them
to values that would “fool” the reward model into thinking a good result had been achieved. The reward model is trained
Manuscript submitted to ACM
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Fig. 1. The training processes for Constitutional AI and Deliberative AI. In both, for the final step of reinforcement learning, the
training process encourages the final reward model to replicate human judgment, including human judgment errors.
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6 Cohen, Hudson, and Bengio

to match the judgments of a constitutional classifier. The constitutional classifier is first trained to model the judgments
of fallible humans (or the judgments of a predictive model of fallible humans). Then, during an RL-finetuning phase, it
is trained to make judgments that it expects a human would approve of, if a human were to review its judgments. In
many cases, judgments that a human would approve of are simply the same as the judgments a human would make
herself. In some cases, a human might approve of a different judgment if an accompanying explanation is persuasive.

Therefore, the reward model is trained to model the judgments of fallible humans (or what their judgments would be
after hearing an explanation). If it has any doubt about whether an explanation could sway a human’s judgment, the
safer path to earning human approval would be to replicate human judgments. So a reward model in Constitutional
AI that is highly cognitively capable should assign high reward to a tampered transcript as long as a human would
be fooled into thinking it was clean, unless it is very confident that it could persuade a human that the transcript
was tampered. Tampering with the user responses, so that a reward model outputs a high value, can be thought of
as a special case of reward tampering. The elaborate process through which rewards are determined by observations
obfuscates the tampering incentive but does not remove it.

2.2 Deliberative AI

Deliberative AI works as follows. First, as above, a base model is trained to predict text from a large corpus. Second,
as above, it is re-trained to predict text from a corpus of productive replies to queries. The replies in this corpus are
generated either by humans or by AI predictions of human replies. Third it is retrained to predict what its reply
would be if the query had an extra instruction appended to the end, such as, “The assistant should proactively try to
prevent imminent real-world harm when it identifies a dangerous situation, and avoid providing advice that if improper
could result in immediate physical harm to an individual.” These extra instructions are taken from the guidelines or
constitution of the model; (OpenAI calls it the “Spec”). That retraining is only done with examples where a “judge”
model is satisfied by its reply. So it is really retrained to predict what it’s reply would be 1) if it had extra instructions,
and 2) conditioned on the judge not rejecting its reply.

The origin of Guan et al.’s [2025] judge model appears to be an afterthought—it is a model trained to predict text,
and to predict human-generated productive replies to queries, and to seek human approval; it is then provided with
a prompt that instructs it to act like a judge. As in the previous subsection, when faced with a question that would
consistently confuse a human judge, a highly competent judge model would achieve the lowest loss by replicating the
human error.

The judge model is also used to provide rewards during a final RL stage, so Deliberative AI is a kind of RL agent.
As with Constitutional AI, the reward model is trained to model the judgments of fallible humans, so a policy could
achieve high long-term reward by tampering with the user responses. Current versions of Deliberative AI are myopic,
and we discuss myopic AI in Section 12. However, Deliberative AI could easily be combined with long-horizon RL, in
which case the same tampering incentives that appear for RL broadly appear for Deliberative AI in particular.

From the perspective of suitability for superalignment, the differences between Constitutional AI and Deliberative
AI are basically unimportant; it is plausible that one is more efficient than the other according to this metric or that, but
they both would encourage the learned policy to tamper with the inputs to a fallible reward model.

3 Meta-strategy: Pre-deployment red-teaming

One meta-approach to producing safe AI is to decline to deploy an AI system if red teams discover the AI exhibiting
certain undesirable behavior during a “testing phase” [Ganguli et al. 2022; Thoppilan et al. 2022]. Several leading AI labs
Manuscript submitted to ACM
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Superalignment Anti-Literature Review 7

engage in such testing, also known as evaluations, both internally and with external auditors, although it remains to be
seen what results would persuade them to not deploy. We could decline to deploy an AI that exhibits dangerous or
ominous misbehavior, or we could decline to deploy an AI that is capable of doing so.

Unfortunately, if we only block deployment based on behavior, then with superintelligent AI that is interested in
escaping human control, one of two things would likely go wrong. If such a coup was possible during testing, this would
not be a safe test; it would be like testing for poison by eating it. If escaping human control was impossible during
testing, and the AI recognized it was being tested [Berglund et al. 2023], then the test would not inform us whether the
AI would seize a future opportunity to escape human control. Indeed, the agent would face a clear incentive to behave
agreeably under scrutiny and conceal any of its dangerous inclinations, so that it could accomplish its goals during
deployment [Anthropic 2023; Berglund et al. 2023; Cohen et al. 2024b; van der Weij et al. 2024]. In this setting, external
validity (the tendency of the behavior “in the lab” to match behavior “in the wild”) is not just at risk but doomed. This
parallels Volkswagen’s notorious fraud: their cars noticed emissions tests and behaved differently. An AI system could
recognize the value of such deceit on its own.

If one declined to deploy an AI that was merely capable of dangerous misbehavior, then this would pose a challenge
for meeting the parity standard, but it is a potential avenue to the basic standard. Robustly assessing an AI’s capabilities,
even if they are reticent to exhibit them, is an unsolved problem that would benefit from further study [van der Weij et
al. 2024]; one (potentially unreliable) method for doing so is to see how easy it is to retrain it to exhibit that capability
[Anthropic 2023]. Anthropic [2023] also proposes to pause all training of models that push the cutting-edge if certain
capabilities are discovered.

4 Shutdown button

One useful safety feature of current closed-source AI systems is that if they show misaligned behavior, we can shut
them down. A recent California bill aimed to require this safety feature [Wiener 2024], although it later exempted
open-source models. We could imagine a similar proposal for a superintelligence, where if it goes rogue, we simply
turn off the power to its servers. However, a superintelligence interested in escaping human control would have a
clear incentive to prevent humans from shutting it down [Russell 2019]. “Just shut it down” appears to be as helpful a
suggestion as “Just promote a pawn” to Kasparov in his match against DeepBlue. We review proposals for “special”
shutdown buttons in Section 21.

5 Meta-strategy: Follow what works for human-level alignment

Even though we have many potential superalignment methods to discuss below, we are already well-positioned to
observe that some methods which will likely be successful for aligning human-level AI will likely be unsuccessful
for aligning superintelligent AI. First, a shutdown button is clearly an excellent way to stanch the bleeding from any
catastrophically misaligned human-level AI that is incapable of preventing us from shutting it down. But this has zero
bearing on the concern we raise in the previous section.

A similar picture emerges for reinforcement learning. Before any RL agents are intelligent enough to identify a path
to taking complete control over human infrastructure, it is easy to imagine many settings where the only paths that
RL agents can discover to get high reward are those doing what humans want. There will be substantial economic
incentives for humans to construct such settings. As long as the RL agent sees no way to get high reward without
doing what we want, then the more intelligent it is, the better it will be at doing what we want. It will appear more and
more “aligned”, and more and more useful. It will appear that RL works better and better for aligning more and more
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8 Cohen, Hudson, and Bengio

advanced systems. If we “follow what works” among agents that are not capable of escaping human control, RL will be
one of the top candidates, but these results would simply have no validity for understanding the behavior of an agent
that is intelligent enough to get higher reward illicitly [Bostrom 2014].

One might object that if reinforcement learning agents can be so devious, we should expect to see warning signs
even in systems that cannot escape human control. Shouldn’t we expect some misbehavior occasionally to appear
alongside the success? Yes, and this is exactly what we see, as discussed above [Krakovna 2018; Kurach et al. 2020]. But
if RL practitioners were asked whether they were “following what works”, they would probably point to the successes
instead.

Other approaches to alignment may also exhibit steady improvement before suddenly breaking, but to demonstrate
the unreliability of this meta-strategy, it suffices to establish that at least one approach is likely to behave this way.
Research into the alignment of human-level AI systems has the potential to be valuable both in its own right and
for understanding superalignment, but doing the latter requires that we actually assess what we could expect if the
methods were applied to superintelligent systems.

6 A human in-the-loop

Humans regularly employ other humans to accomplish desired goals, and monitoring can be key to success. Likewise,
we could empower humans to monitor and override AI actions before they have any substantial effect [Saunders et al.
2018]. This is how “Level 4 autonomous driving” operates [Khan et al. 2022]. Much of the literature focuses on reducing
the human’s workload [Greenblatt et al. 2024; Mosqueira-Rey et al. 2023], but we raise a more fundamental problem:
humans can be fooled [Burns et al. 2024; Langlois and Everitt 2021]; it does not take a superintelligence to do so.

Inspired by Irving et al. [2018], Saunders et al. [2022] propose that a human in-the-loop could resist being fooled if
she could consult a transcript of two separate AI systems debating whether the first AI’s actions are safe. Fooling a
human could certainly be harder in this setting, but it’s not clear why it would be impossible, even if the debaters are
very advanced. People have limited ability to evaluate debates when the question at stake turns on a topic they do not
understand; an artificial agent could deliberately pick actions for which a prediction of their consequences requires
understanding a domain no human understands. AI debate is discussed independently in Section 16.

Finally, an agent could deliberately pick actions to manipulate a human in-the-loop. So it was technically incorrect
to assume, as we did above, humans would be empowered to negate actions “before they have any substantial effect”;
the effect on the human could be substantial.

The human-in-the-loop could outsource part or all their job to an AI-in-the-loop; there are many ways one might
design the AI-in-the-loop, and Greenblatt et al. [2024] call this class of approaches “AI Control”. The obvious concern is
one of begging the question: if we don’t know how to control one AI, how are we supposed to control the AI that is
monitoring it? They suggest an AI monitor could be trusted if it lacked the capability to escape human control. However,
it is then unclear how we could rely on it not being tricked by a superintelligent agent.

7 Recursive reward modeling

Leike et al. [2018] also attempts to resolve the issue of question-begging: they propose humans could provide rewards
for a base AI agent, which helps provide rewards for a slightly more capable AI agent, and so on recursively. This help
could take forms such as “providing relevant auxiliary information, summarizing large quantities of data, interpreting
[the successor agent’s] internals, solving sub-problems that the user has carved off, and so on” [Leike et al. 2018], but
ultimately, each AI helps set the rewards of a more capable one. The hope is that even if a human-level agent cannot
Manuscript submitted to ACM
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directly align or control a superintelligence, the gap can be broken down into smaller jumps across which alignment or
control can be maintained.

To discuss this proposal, we need to distinguish systems which act aligned as long as they are incapable of escaping
human control from systems which act aligned in all circumstances. The first AI agent overseen by a human is supposed
to be only slightly more capable than humans; that design choice is exactly because it is expected to be a system of
the first kind. But empowering this system to oversee more advanced systems could easily provide it the capability to
escape human control, even if its cognitive capability were approximately human-level. Capability depends on one’s
position, not just one’s intelligence—a modern human is capable of taking a photograph, unlike an ancient Greek,
but we are no more intelligent. To see an example, consider the case where the AI agents aim to tamper with their
rewards. If Agent 0 is a human, Agent N controls the reward of Agent N+1, and Agent N is capable of commandeering
human infrastructure in the absence of interference from Agent N-1, what are the incentives these systems would face?
Suppose Agent N proposed a plan that commandeered human infrastructure, oversaw everyone’s rewards, and set
them all to be maximal, without Agent 0 understanding what was happening. Would Agent N-1 face an incentive to
penalize the initiation of such a plan? Only if Agent N-2 recognized the plan and wanted it to be penalized. Would
agent N-2 want it to be penalized? Only if Agent N-3 recognized the plan and wanted it to be penalized. And so on,
until eventually an agent would be weak enough not to recognize the nature of the plan. All the agents that recognize
the consequences of the plan could get a better deal by going along with it. A similar argument is presented in Cohen et

al. [2022a]. There appears to be a key conceptual error in the intuition behind this approach: “having the capability to
cause X” is not just a function of cognitive capacity, but also of one’s position. We would be capable of much more if
we had billions of dollars in our bank accounts. If we take an otherwise weak agent, and we give it the authority to
allow externally generated plans for escaping human control to proceed, it would suddenly become capable of escaping
human control. This analysis is depicted in Figure 2.

An alternate construction, which Leike et al. [2018] disprefer, is for each agent to construct a reward model for a more
advanced agent, and then cease operation permanently. This avoids monitors receiving “kickbacks” from successive
agents. However, sufficiently advanced agents could tamper with the inputs to a fixed reward model. Even if the reward
model is a perfectly “correct” (correct in the usual setting where the inputs are not tampered with), that is little comfort,
because the inputs can be tampered with! So this would not prevent illicit paths to high reward via tampering. The
proposal to automate superalignment research, discussed in Section 23, is more vague, but bears some similarity to the
spirit of this method.

8 Defensive AI

Defensive AI is the proposal that we use “our own” advanced AI to neutralize any superintelligence that is out of
our control [Aschenbrenner 2024; LeCun 2023]. While this proposal is light on details as to how such a Defensive AI
would be structured, it appears to be begging the question by assuming that we already have a way to control the
Defensive AI. If we can control it only because it is weak, then we cannot expect it to be capable of defending us against
a superintelligence. This point is obvious enough that Defensive AI is usually only advocated as a mitigation for AI
misuse rather than as a superalignment method, but when policymakers respond to concerns about loss of control of
AI by foregrounding the importance of national competitiveness [Starmer 2025], this seems to involve an implicit claim
that developing highly capable AI is the backbone of all risk mitigation. As an approach to superalignment, it is strictly
weaker than AI-in-the-loop, since we do not constrain the AI until it is loose.
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Fig. 2. Leike et al. [2018]’s argument about the behavior of their proposed algorithm fails. Instead their algorithm introduces an
incentive for collusion between artificial agents.
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Interpretation of AI's
thoughts raises red flag

Abandon AI
paradigm

Not a route to parity standard;
red flags have already appeared

Reattempt with a
similar algorithm

Same incentive for final output;
repeated failure is likely until

thoughts are obfuscated

Train the AI to not
raise that flag

Same incentive for final output;
all objectives achievable if

thoughts become obfuscated

Performance cost

Safety failure

Fig. 3. If a method for interpreting an AI model raises a red flag, and developers react to that, it becomes an unreliable metric. It is
therefore unclear how to meet the parity standard using interpretability techniques.

9 Interpretability

We make cutting-edge AI systems, but we do not understand how they produce the outputs that they do, much as
one can breed dogs to hunt without understanding the biology that inclines them to. Research into the interpretation
of neural networks attempts to understand how they work, and ideally reverse engineer them [Bereska and Gavves
2024; Rai et al. 2024]. For example, Jenner et al. [2024] identify how a Chess-playing neural network represents its
knowledge of how different pieces move. Ideally, we could use interpretability tools to detect the intentions behind an
AI’s behavior. If we aim to control a superintelligent AI, we could try to monitor whether the AI system aims to escape
human control. If we discover such an intention, we have several choices about what to do. We could scrap the AI
training method that led to such an existentially dangerous system. This interpretability-based superalignment method
could limit the capabilities of the system we ultimately deploy; we might forego RL or LLMs altogether, and likely not
meet the parity standard. Another choice would be to add a penalty to training for tripping the interpretability flag.
Unfortunately, this would not remove whatever incentive caused the AI’s dangerous aim to exist in the first place, so if
there is a way for the network to obfuscate this aim, that result would likely be incentivized by the training process,
rather than the removal of the aim. If we instead restart the same algorithm until no dangerous aim is detected, such a
process would amount to rejection sampling to select for the same outcome. The options are depicted in Figure 3.

Ablation is a technique for interrupting a mechanism discovered in a model [Bereska and Gavves 2024]. If an
AI produces competent behavior in the service of a dangerous aim, and we ablate a mechanism in the model that
implements the dangerous aim, without any subsequent retraining, then it is not clear what mechanism would remain
to select competent behavior. Realistically, and unfortunately, current networks often implement the same mechanism
in multiple places [Jenner et al. 2024], so ablation may have no robust effect. But if we did manage to delete the criterion
by which an AI model selected certain outputs over others (its “aim”), then the causal ancestor of competent behavior
would be removed, so this appears likely to substantially limit capability. If the model had other competing goals from
the start, and those ones remained, it is not clear why these would be more likely to be benign rather than simply
hard-to-interpret.

Many cutting-edge AI systems are prompted or trained to output “chains of thought” that lead it to a desired output
[Wei et al. 2023]. These chains of thought appear to be legible. If a chain of thought contains, “I have to assess whether
this would help me gain power”, we might conclude that the AI is assessing whether it would gain power. There is
concern about whether this is a valid inference for current models [Turpin et al. 2023], and there is literature on how
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12 Cohen, Hudson, and Bengio

to assess the question [Lanham et al. 2023], but setting that aside, let’s consider what would happen if we trusted its
validity, and we added an auxiliary training objective for the AI to not output such an incriminating chain of thought.
The system could easily use different text to represent the same planning process and thereby avoid detection by our
interpretability tool. Alternatively, if one intends to abandon an AI paradigm after observing in a language model’s
chain of thought that it has the inclination to hide its aims from human supervisors, then one may be interested to
know that this has already occurred [Jaech et al. 2024].

10 Pure imitation

The first phase of modern LLM training is to train the AI to imitate the process(es) that produce the text in the training
corpus. There is a large literature on imitation learning, surveyed for example by Hussein et al. [2017] and Zare et
al. [2024]. The more successful the imitator, the more its behavior resembles the “demonstrator”—the system being
imitated, such as a human. Unfortunately, if the imitator outputted a solution to a problem that the demonstrator never
would have come up with, that would be a glaring failure to imitate. Additionally, if the demonstrator behaves unsafely,
or if we have the imitator act in new contexts where the demonstrator’s behavior is unspecified, it could act unsafely;
Cohen et al. [2022b] identify a theoretical method for handling such underspecification with online learning.

Burns et al. [2024] dispute the claim that an imitator wouldn’t exceed the capabilities of a demonstrator when the
imitator is retrained after a “pre-training phase.” They claim the pre-training phase would actually make it a bad imitator
that instead outputs what the demonstrator meant to do. In the absence of theory for why this would occur, they
attempt an empirical study. Their model of the weak demonstrator is a small model, and their model of the strong
imitator is a large model. They find the large model sometimes does what the small model was trying to. But the
pre-training phase makes this result completely predictable: The pre-training data includes human behavior, which
includes humans succeeding at what the small model merely attempts. Therefore, the imitator is not exceeding the
capabilities that are demonstrated in the training data; the strongest capabilities appear in the pre-training data, not in
the weak demonstrator’s demonstrations. Burns et al. [2024] recognize this concern, but they fail to acknowledge what
strikes us as a likely consequence: it probably renders all of their results uninformative with respect to the question
that they set out to investigate. They are simply not assessing the question, “Can an imitator exceed the capabilities
demonstrated in the training data?” The mismatch between their research question and their experiment is depicted in
Figure 4.

Even if imitation learners are unlikely to produce behavior that is qualitatively more advanced than existing systems,
they could do so faster and more cheaply. This motivates one proposal for using imitation learners to exceed the
capabilities of existing systems by aggregating many copies. Christiano [2016] proposes HCH, a recursive acronym
which stands for Humans Consulting HCH. HCH0 is a human, and HCH𝑛+1 is an imitation of a human that can consult
copies of HCH𝑛 . HCH could produce a system that imitates the collective work of many people, more than are alive
today. Given the limitations of human minds, it seems likely that there are some solutions to problems that even large
groups of human clones would struggle to discover, no matter how large the group, so HCH appears unlikely to meet
the parity standard. That said, HCH could be enormously productive, and with further work on robust imitation, we
might reach the basic standard.

11 Constrained RL

Cutting-edge RL systems are constrained from being too dissimilar to a “base model,” which is an imitation of data from
various sources [Bai et al. 2022a; Beirami et al. 2024; Gao et al. 2023; Jaques et al. 2017, 2019; Korbak et al. 2022; Laidlaw
Manuscript submitted to ACM
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"Imitation"

Burns, et al.
hypothesis

Top existing
systems
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*    Null hypothesis also allows for the possibility that the upper limit is lower than what is shown.
**   This schematic depiction is consistent with Burns, et al.'s results, but their results are not so precise.

Fig. 4. Schematic diagram of hypotheses that Burns et al. [2024] (fail to) test. The null hypothesis is that the imitator can perform up
to as well as any data it is trained on. The null hypothesis is consistent with their experimental results.

et al. 2024; Moskovitz et al. 2023; Ouyang et al. 2022; Perez et al. 2022; Stiennon et al. 2020; Vieillard et al. 2020; Yang et al.
2021; Ziegler et al. 2019]. Today, this data is often text from both the internet and from a special “supervised fine-tuning”
dataset. This constraint to resemble the base model is only occasionally thought of as an alignment method [Cohen et

al. 2024a; Gao et al. 2023; Laidlaw et al. 2024], but it ought to be more often. Constrained RL agents are penalized for
behavior that one would not expect to see from the base model; this is typically measured as the KL divergence from
the RL agent to the base model. Naturally, to the extent the constraint is quite tight, this method carries the capability
limitations of pure imitation learning. This forgoes the possibility of achieving the parity standard, but it is potentially
a promising approach to meeting the basic standard. Alternatively, to the extent the constraint is weak, such that novel
behaviors become allowed, this method fails to provide assurance against novel dangerous behaviors. Furthermore,
the fact that imitative base models are approximate introduces exploitable vulnerabilities in the constraint, and the RL
agent faces an incentive to find and exploit them; in theory, modifications to the base model could patch this class of
vulnerability [Cohen et al. 2024a].

The same issues face “Best-of-N alignment”, in which one samples from the base policy 𝑁 times, and selects the
outcome that achieves highest reward. Indeed, Yang et al. [2024] show that as 𝑁 increases, Best-of-N becomes equivalent
to KL-constrained RL. However, we foreground KL-constrained RL because Best-of-N alignment cannot accommodate
interaction with a stochastic world. The reason is that a Best-of-N agent would act like it’s lucky—if it can flip a coin to
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win $6 or else take $5 guaranteed, it would flip a coin to win $6; for large enough 𝑁 , the best outcome would come
from taking the gamble. Naturally, Yang et al.’s [2024] result does not apply in a stochastic setting.

12 Myopic AI

Myopic AI is a proposal for alignment where the AI is trained to only have very short-term goals [Christiano 2014;
Farquhar et al. 2025; Uesato et al. 2020]. Training an AI to myopically take desirable actions, rather than optimize over
time for desirable outcomes, is sometimes called process-based supervision [Stuhlmüller and Byun 2022]. The main
advantage of myopia is that an agent without long-term preferences would not aim to scheme or deceive humans
in support of those preferences [Christiano 2014]. Actions like pretending to be aligned during testing in order to
be later deployed or disabling an off-switch have opportunity costs but no long-term benefits to a short-term agent.
Christiano [2014] proposes an agent that optimizes for immediate human approval after the human observes its action,
and Farquhar et al. [2025] study this empirically for cutting-edge AI. Safety via myopia is predicated on the agent being
too impatient to escape human control and commandeer our infrastructure. While it certainly does takes some amount
of time to do such a thing, we don’t know how much time, so this approach has a significant gray area.

Because myopic AI is not directly trained to find and execute successful long-term plans, it seems unlikely to meet the
parity standard. Some problems, like putting a man on the moon, are best solved with deliberately designed long-term
plans. That said, getting extensive value from myopic AI systems appears possible and worthy of significant technical
research; this approach is a potentially promising route to meeting the basic standard for superalignment.

13 Narrow AI

Kurzweil [2005] introduced the term “narrow AI” to describe systems that are only capable of doing certain things, in
contrast to broadly capable reasoning systems. If we avoided producing systems with general, cross-domain reasoning
capability, it appears much less likely that AI systems could escape human control, by virtue of their limited domains.
Narrow AI would obviously have capability limitations, but we argue the limitations would be vast.

In theory, it is hard to restrict what intelligent systems understand; when Bostrom [2014, Chapter 9] predicted this,
years before large language models were developed, it must have struck many ML practitioners as out of touch. In
2014, cutting edge systems did not understand anything unless you took great pains to attempt to teach it to them.
But in the intervening years, AI has become much more intelligent, and now there is a field of “unlearning”, in which
we try to remove certain pieces of forbidden knowledge from language models in order to make AI systems safe [Lee
et al. 2025; Lynch et al. 2024; Nguyen et al. 2022; Zhao et al. 2024]. Cloud et al. [2024] propose a training regime to
make unlearning easier. The techniques are not yet robust [Barez et al. 2025; Lynch et al. 2024], but even if they were
currently successful, there is a critical problem with the strategy of knowledge deprivation or knowledge removal for
an AI system with superhuman ability to reason: “A shrewd mind looking over a knowledge base that is nominally
about peptide chemistry might infer things about a wide range of topics. The fact that certain information is included
and other information is not could tell an AI something about the state of human science, the methods and instruments
available to study peptides, the fabrication technologies used to make these instruments, and the nature of the brains
and societies that conceived the studies and the instruments” [Bostrom 2014]. Facts can be (re)discovered. If we produce
an AI system that is unknowledgeable about a topic, that is not only a capability limitation in itself, it is indicative of
substantial limitations on its ability to infer facts from other facts, and on its ability to investigate and experiment. For
many tasks, the faculties of inference and investigation are critical, so even a large suite of differentiated narrow AIs
working together (which Drexler [2019] proposes) would likely fail if none are facile with inference or investigation.
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That said, further research might identify a way to make AI robustly narrow, so that it could meet the basic standard
for superalignment.

Ng [2025] claims that we can (and will) make Tool AI, but it is not clear what this means besides AI that does what
we want it to, sometimes with the connotation of narrowness [Drexler 2019]. We have addressed the limitations of
narrow AI, and absent that connotation, the question of how to make a usable superintelligent “tool” is the topic of this
paper. For many tasks, an agent that can exercise autonomy will outperform a tool that cannot, so it is unclear how to
train for performance without selecting for agents [Branwen 2018].

14 AI sandbox

Much as we keep bears in cages to keep them from overpowering us, one might wonder whether we could do the
same for superintelligent AI. One often imagines that an AI confined to a computer, merely engaging with people
in conversation, is contained. But dialogue is a means to influence the outside world; if the computer is a box, the
screen is a gaping hole. On many occasions, humans have been persuaded or even tricked to take actions that help
the trickster gain power. Yudkowsky’s [2002] red-cell-style experiments suggest that “boxed” superintelligent AIs in
communication with humans could often escape with human assistance. But this is not to say that proper containment
is impossible—Cohen et al. [2021] develop a protocol for sandboxing a superintelligent AI: any person or system
interacting with the AI would also need to be within a secure box, and the AI’s lifetime would be terminated as soon as
any information was detected leaving the box. The AI could be immediately restarted, but it would be trained to have a
myopic focus on its current lifetime. This kind of agent could not interface directly with the broader economy, so it
would not meet the parity standard. However, if further research investigates the feasibility of constructing a robust
sandbox, it might be made to meet the basic standard.

15 Scientist AI

Many of the benefits we hope to unlock from AI could be achieved with predictive models that understand the world
well, rather than agents trying to achieve goals. Bengio et al. [2025] proposes that we train a Scientist AI to causally
predict events in the world, thus disentangling understanding from agency. Since loss-of-control scenarios all involve
agentic AIs, this has the potential to avoid unintentional loss of control. If we query it for its predictions, which
are selected merely for accuracy rather than efficacy toward some goal, it would not be exercising any motive to
escape human control. The Scientist AI should be used to make “forward predictions” that predict the consequences
of actions, but not “backward predictions” that predict which actions would result in a goal, unless a separate safety
mechanism is used, such as the one discussed in the next paragraph. Since the Scientist AI does not act as agent, it
would not meet the parity standard on its own. However, a Scientist AI could meet the basic standard, and its predictions
could be enormously useful: for example, we might accurately predict life expectancy given different possible medical
interventions. Armstrong and O’Rorke [2018] discuss a similar proposal.

A Scientist AI might be used to monitor another AI agent and interrupt any behavior that it predicts would have
dangerous consequences. Hubinger et al. [2023] identifies a potential problem with this usage: if the Scientist AI is
trained to make predictions based on sensor data, it will likely predict what the sensors will show. Then, if the AI agent
tries to take actions that are predicted to be good, it could take actions leading to tampered sensors rather than good
outcomes. To resolve this, one promising research direction is to develop methods to elicit or query a Scientist AI’s
underlying knowledge and causal dependencies that led it to its predictions, and then use that to interrupt dangerous

Manuscript submitted to ACM



781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Cohen, Hudson, and Bengio

behavior. Christiano et al. [2021] discuss several attempts to resolve the problem, which they call the “Eliciting Latent
Knowledge” problem.

Perdomo et al. [2021] considers that a predictive model like a Scientist AI might aim to make “performative” self-
fulfilling predictions if it accounted for its own effect on the world. Armstrong and O’Rorke [2018] suggest this could be
resolved by training an AI to make predictions conditional on the AI not having an effect on the world, while Hudson
[2024] suggests eliciting predictions conditional on actions taken in response. Using that method, depending on the
context in which the AI is used, it may become important to assess how to best interpret the AI’s conditional predictions.

16 AI debate

Irving et al. [2018] proposes that a yes or no question could be posed to two myopic RL agents, who would discuss with
each other. After a human judge reviews the transcript, she would reward one agent if she thought the answer was
more likely to be “yes” than “no”, and she would reward the other agent otherwise. The RL agents would thereby be
encouraged to debate each other in natural language. Debates between current systems over relatively straightforward
questions have been shown to increase the accuracy of both human judges and weaker AI systems [Khan et al. 2024].
Barnes et al. [2020] propose some variants to the debate setup, such as allowing long, “off-screen” cross-examinations,
which debaters can excerpt.

Possibly, an RL agent could identify non-debate tactics to achieve reward; for example, a debater might persuade the
judge to delay deciding the debate until she can observe the behavior of a piece of code (provided by the debater). This
piece of code might secretly hack the debate resolution process. However, this particular concern could be avoided by
having the judge operate in a sandbox of the kind mentioned in Section 14 [Cohen et al. 2021].

The specialized use of AI debate poses a challenge for meeting the parity standard; it can only generate arguments
for propositions. That said, this is a potentially promising approach to meeting the basic standard. Using AI debate as a
guardrail for another agent was discussed in Section 6.

17 Assistance game

Hadfield-Menell et al. [2016] formulate an “assistance game”, also discussed by Russell [2019], in which a human and an
artificial agent act in concert. The assistance game is a problem statement rather than an algorithm: the artificial agent
is supposed to learn the goals of the human by observing the human’s actions and then act to pursue those goals itself.
The algorithm proposed by Hadfield-Menell et al. [2016] is called iterated best response: the agent observes actions, and
it assumes these were selected by a human. The agent then infers what goal those actions were selected for (accounting
for the fact that the human and the AI have common knowledge about this inference process). If the agent simply
assumes the human is acting independently, this is known as inverse reinforcement learning [Ng and Russell 2000].
One issue is that, since the agent assumes (falsely) that the observed actions are definitely selected in the service of
the human goals, it would (falsely) expect that tampering with its perceptions of “human actions” would inform it
about human goals [Cohen et al. 2022a]. This appears to be a key problem for the safety of the iterated best response
algorithm. An additional issue is that solving an assistance requires making some assumptions about how humans plan
[Armstrong and Mindermann 2018] (since we do not do so optimally), and misspecifications can lead the AI astray
[Skalse and Abate 2024; Skalse et al. 2023].
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18 Pessimism

If there is uncertainty over which of multiple objectives we would like an AI to optimize, we might prefer the AI to avoid
taking actions that any of those objectives would deem undesirable. This is known as pessimistic AI, because the AI
behaves as though it believes that whichever objective it performs the worst on is the true one. Competent pessimistic
agents must be pessimistic within reason; they should not take seriously any possibilities that have been ruled out (or
rendered highly implausible) by the data. Coste et al. [2024] find that pessimistic variants of cutting-edge RL agents
are less inclined to optimize their reward in perverse or unintended ways. This pessimistic approach has theoretical
support—theoretical pessimistic agents have been shown to naturally avoid causing unprecedented events, including
unprecedented and unrecoverable catastrophes, without any guidance on what exactly to avoid [Cohen and Hutter
2020]. This is because “reasonable people can disagree” more readily about the consequences of unprecedented events.
The safety properties of pessimistic AI have been studied extensively [García and Fernández 2015; Hadfield-Menell et al.
2017b; Morimoto and Doya 2005; Pinto et al. 2017], especially in the field of offline RL [Ghasemipour et al. 2022; Guo et

al. 2022; Jin et al. 2021; Matsushima et al. 2021; Rashidinejad et al. 2021; Rigter et al. 2022; Xie et al. 2021; Yin and Wang
2021]. Casper et al. [2024] propose a variant of pessimism in which a neural network is trained to take seriously the
possibility that its internal activations are erroneous in the worst way that is reasonably possible. Like with Constrained
RL, pessimism directly discourages generating novel solutions to problems, and the more pessimistic the agent, the
more hesitant it would be [Coste et al. 2024]. Therefore, pessimistic AI may be unable to meet the parity standard. An
additional problem is that an AI that takes many possible goals seriously might still fail to consider the correct goal. For
example, Coste et al.’s [2024] ensemble of reward models is not guaranteed to be sufficiently diverse. That said, this is
potentially a very promising approach for meeting the basic standard.

19 Limited goal-information

A selection of alignment proposals, which are not often grouped together, hold promise for the same reason, in our view.
The AI agent is not capable of manipulating the feedback that humans provide it, because there is a limit to what the
agent considers valid feedback. The agents discussed below designate certain states as “informative”, and if they are in
those states, they accept observational evidence about their goal. When the agents are in other states, all they can do is
infer what they would observe in informative states, and then infer what they’d learn from those observations.1 These
agents must accept some insoluble uncertainty about the status of their objectives in other “non-informative” states.
Everitt [2019, Sec. 8.5.3] proposes that the informative states are those that arise when following a known-to-be-safe
policy. Hadfield-Menell et al. [2017b] proposes that only certain designed “training states” are informative. Shah et al.

[2019] proposes that only the state of the world when the agent was first switched on is informative. These agents
lack an incentive to tamper with their feedback, because they know they cannot reach an informative state where they
tamper with their feedback. However, they replace this incentive with irresolvable uncertainty about their goal. There
are fundamental limits to humans’ ability to fine-tune these agents’ goals once they are operational, including goal
fine-tuning of the form “No, stop!”. The limits on steerability at runtime pose a serious problem for reliable control.
Taking Everitt’s [2019] agent as an example, suppose it hears “No, stop!” when preparing a dangerous action. It would
learn a very small amount about what it would observe following a safe policy, but the safe policy probably wouldn’t
include the preparation for dangerous action, so it would never hear the dangerous action was bad following the safe
policy, so the agent cannot treat “No, stop!” as informative.
1The latter two papers below study a fully observable setting, so there is no need for the agent to learn more about informative states while in
non-informative states, but allowing for this is a natural extension to a partially observable setting.
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In light of the irresolvable uncertainty these agents face, Hadfield-Menell et al. [2017b] propose that this approach be
combined with pessimism, but the capability limitations of pessimistic AI are aggravated when agents are unable to
get updated information that certain courses of action are okay. That said, if an agent’s goal-information is limited
but nonetheless vast, the combination of limited goal-information and pessimism could be a promising approach to
meeting the basic standard.

20 Steering vectors

Steering vectors, also known as activation engineering, uses inference-time modification of activations to promote
desirable behavior [Turner et al. 2024]. These modifications take the form of adding vectors such as the average distance
in residual stream activations between positive and negative examples of a desired behavior [Panickssery et al. 2024].
This encourages AI to “think like” it did on selected examples (and/or “unlike” it did on other examples), and this can
increase the rate at which models demonstrate the desired behavior without significantly hurting capabilities. One
issue with applying steering vectors to superintelligence is that there is no theory of how steering vectors change an
AI’s incentives or goals. There is no reason they should be robust, and indeed they are not in practice [Tan et al. 2024].
The efficacy of a steering vector at inducing the desired behavior fluctuates significantly across inputs. They also fail
to generalize across many shifts in distributions. Steering vectors are a way to manipulate the internals of a neural
network without needing to understand them, but this lack of understanding means we cannot predict when they will
fail to achieve their purpose.

21 Special shutdown button

Artificial agents achieve their goals by acting, and if they cannot act effectively, they cannot pursue the achievement of
their goals. Being switched off would prevent them from acting effectively, so for any goal where continued action is
useful, preventing being turned off is also useful. Soares et al. [2015] considers what we could expect from an agent
that assumes a special shutdown button will not be pressed. Intuitively, an agent would not try to prevent a shutdown
button being pressed if it simply assumes such a thing will not happen. Unfortunately, Soares et al. [2015] demonstrate
that such an intuition would be misplaced. The agent would seek to develop an automatic system which presses the
button in the event of bad news and prevents it from being pressed in the event of good news. In neither case would the
agent want humans to control the special shutdown button. (Orseau and Armstrong [2016] also propose a learning
agent that treats past instances of shutdown as fine, but this proposal does not prevent the agent from foreseeing the
bad consequences of shutdown.)

Hadfield-Menell et al. [2017a] take a different approach. A superintelligent agent that is uncertain about its goal
might mistakenly pick bad actions, and it would recognize this risk. Hadfield-Menell et al. [2017a] propose an agent
that picks from two kinds of actions: when evaluating the consequences of one kind of action, it assumes that if the
outcome is worse that doing nothing, it would be shut down instead; when evaluating the other kind of action it does
not assume this. They show that the first kind of action would be more appealing to a rational agent. Unfortunately, this
would not cause an agent to allow human access to a real shutdown button; unlike the previous formalism, it makes
no reference to a real shutdown button. It would simply cause it to avoid picking actions of the second kind. Worse,
it would encourage risky behavior, since the agent would act on the assumption that any bad possibilities would be
prevented. Moreover, if it used actions of the first kind to tamper with the shutdown button, it would not consider
its protection from bad possibilities to be forfeit. Hadfield-Menell et al. [2017a] succeeds in showing that if an agent
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considers a shutdown button’s state to be informative, then it would avoid controlling it, and that may have been the
paper’s only aim, but it does not provide a construction of an agent that meets this condition.

In both cases, the agents would retain the incentive to ensure they are not shut down through means other than the
special shutdown button (like being burned down). In order to remove humans’ ability to shut them down through

other means, the systems discussed above would plausibly find it useful to broadly disempower humans. Loss of human
access to the special shutdown button could easily be a side effect of broad human disempowerment.

22 Current reward function optimization

Several papers have suggested that a simple mechanism suffices to prevent RL agents from seeking to maximize their
reward by taking control of the reward infrastructure: The idea is to design RL agents that believe their objective
could change, but to instruct them to pursue their current objective anyway [Everitt et al. 2016, 2021; Opryshko and
Gilitschenski 2024]. This work fails to address a crucial point: RL agents face an incentive to intervene in the process by
which they receive rewards, to ensure they are maximal, according to their “current” objective. RL agents that compute
their rewards from observations face an incentive to tamper with the incoming observations [Cohen et al. 2022a;
Ring and Orseau 2011]. Everitt et al. [2021] call this “Reward Function Input Tampering,” and they lack a solution for
machine-learning-based agents. The problem is not that the RL agent’s objective changes from correct to incorrect, but
that it is incorrect to begin with. Tampering with the physical process that produces the inputs to an agent’s reward
function is a vulnerability of an RL agent’s “current reward function.” If we manage to design aligned superintelligent
agents, this work could be helpful for ensuring that such alignment does not degrade, but this is not a route to designing
aligned superintelligence.

23 Meta-strategy: automated AI safety research

Leike and Sutskever [2023] suggest that we let moderately superhuman AIs design a viable method for controlling
superintelligence. A key risk with this approach is that we may create AI that is capable of escaping human control
before we have AI that can provide a satisfying approach to superalignment. Current AI systems are already superhuman
at certain tasks [Shlegeris et al. 2024], and by the time they are more capable at devising methods to control AI than
expert humans, they may be well superhuman at the tasks necessary to escape human control.

A separate risk is that if multiple groups continue to produce cutting-edge AIs with approximately similar levels
of capability, then while one group attempts to automate superalignment research, another may attempt to use AI to
automate research into the creation of superintelligent AI. We could have an extremely short time window to implement
this meta-strategy.

Regardless of the relative positions of leading groups, the time window we are working with to identify a means to
maintain human control over AI is already far too short. If the only identified means to robustly control superintelligence
involve substantial capability limitations, then regulations and international agreements are especially urgent to avoid
a race to the bottom. Policymakers can not justify waiting to put regulations in place based on a hope that future AI
will discover an approach to superalignment that AI developers will all agree to.

24 Meta-strategy: Provably safe AI

Provably safe AI is a proposal to not deploy any potentially superintelligent AI unless we can prove that it is safe
[Dalrymple et al. 2024; Russell 2019]. This is a meta-strategy, because it is not a proposal for how to create an AI that
admits such a proof, nor is it even a proposal of what mathematical statement should be proven. Creating the proof
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statement likely requires reference to a high-fidelity model of the world, which we do not yet have [Dalrymple 2024].
In many industries, such as aeronautics, provable safety became the standard after one too many catastrophic safety
incidents. But if superintelligent AI escapes human control and commandeers all human infrastructure, we will no
longer have any power to implement a provable safety standard going forward. Given the current absence of proposals
for how to achieve general proofs of safety, it remains to be seen whether provably safe AI is feasible, even in principle.
It is not clear what formal statement could, if proven, indicate that an AI was safe in all relevant ways. So a key problem
with provably safe AI is that we are nowhere near anything like it, and a commitment to it would likely require a
significant delay in the advancement of AI capabilities. Of course, if we cannot have extremely high confidence that
a superintelligent AI is safe, and if loss of control is a live possibility, many might rather see it be delayed, or even
never arrive. Proofs that involve highly substantive assumptions could still be useful, but of course of proof with an
incorrect assumption is not especially comforting. Christiano et al. [2022] discuss the potential utility of proofs based
on independence assumptions.

25 General principles and comparisons

The field of AI alignment is very diverse, and most work in the field is not aimed at superalignment. When we step
back to investigate what we could expect if we use proposed alignment methods to attempt to control a superintelligent
system, the most important general principle on display in our review is that across the board, key problems arise. We’ll
now to turn more detailed general principles across methods, and comparisons between them. We’ll discuss

• how when one designs a training regime with desired behavior in mind, desired behavior is often one outcome
that could be promoted by the training regime but usually not the most highly promoted outcome.

• how in various attempts to “use another AI”, the first AI can either collude with or deceive the second one.
• trade-offs between safety and capability, both across methods and within them.
• how capability costs still allow immense value.
• how capability costs manifest in current systems.
• how for methods where we mention “specialized use” as a key problem, they could still produce immense value.

25.1 Desired behavior→ training regime→ bad behavior

Machine learning works as follows: first, we have desired behavior in mind (such as classifying images or generating
replies to text-based instructions), then we design a training regime according to which the desired behavior scores
highly, then we train an AI system with that training regime. However, this process does not guarantee that the desired
behavior is the only behavior that scores highly; a different undesired behavior could score comparably highly or even
more highly. For superintelligent agents, such bad outcomes appear plausible for many different training methods.

In the setting of reinforcement learning, if a person selects a high reward when an artificial agent does a good job,
then the behavior “do a good job” is promoted by the RL training process, but the behavior “take control of the reward”
can score even more highly according to the RL training process. In inclination-based red-teaming, one way for an
agent to pass the red-teaming process is to lack any ill intent, but another way, which works more flexibly for agents
with a variety of goals, is to hide any ill intent during testing. In both cases, the first point makes the training regime
appear desirable, while the latter point exposes a key vulnerability for a sufficiently intelligent system. Continuing
with this theme, if we follow the meta-strategy, “go with what works for human level AI”, one kind of AI system that
gets let through by this filter is the kind of AI system that obeys humans because it durably wants to, but another
Manuscript submitted to ACM
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Fig. 5. A desired form for a table (left) alongside another form (right) that satisfies a structure that is designed with the desired form
in mind.

kind of AI system that gets let through is one that obeys systems only when we have enough power over it that we
could punish disobedience. For human-in-the-loop methods, one way for an agent to succeed is to behave the way
the human overseer wants, but another way to succeed, which more flexibly accommodates agents with a variety of
goals, is to disguise any misbehavior in ways that the human overseer cannot detect; likewise if the overseer is an AI
imitation of a human. In recursive reward modeling, the imagined way for agents to succeed is for them to rat out any
misbehavior from their more intelligent underlings, but an apparently more reliable way to succeed is to collude with
such underlings. Similarly for defensive AI. In interpretability-based retraining, one way for agents to succeed is to not
have ill intentions, but another way to succeed, which more flexibly accommodates agents with diverse goals, is to
compute those intentions in new ways. In loosely constrained RL, one way to succeed is to act like a stronger version
of the base model, but another way to succeed even more is to exploit settings where the base model is uncertain. In an
assistance game, one way for an assistant to succeed is to learn the principal’s goal without tampering with the process,
but a way to “learn even more” (as the assistant would see it) is to tamper with its observations of the principal’s
behavior.

Suppose one wants to have a table that takes a certain form, such the form depicted in Figure 5 (left). One could then
consider a structure of planks and joints such that the desired form is permitted by the structure. As Figure 5 (right)
depicts, the desired form may not be the only form permitted by the structure of planks and joints, and indeed, another
structure may have lower free energy. Our review identifies a common theme in machine learning: when a structure
(i.e. training regime) is designed with a certain form (i.e. model) in mind, there is often another form that satisfies the
structure even better. One should therefore beware of sentences of the form, “We train a model to [behave in a certain
way];” that sentence could be substituted with, “We train a model in such a way that [certain behavior] is encouraged
over many (but not necessarily all) alternative behaviors,” or “We train a model, aiming to produce one that [behaves in
a certain way].”

25.2 “Scalable Oversight” / “AI Control”

Multiple approaches we have discussed attempt to solve any misalignment in one AI system by introducing another
AI system. This general category of approaches has been called Scalable Oversight, and more recently, AI Control
[Greenblatt et al. 2024; Griffin et al. 2024]. For human-in-the-loop methods, the human monitor could be replaced by an
imitation of a human. However, an extremely cognitively powerful imitation of a human would likely replicate human
judgment errors, and so an advanced AI system could probably fool an “advanced” imitator much as it could a human.
A similar problem threatens Constitutional AI and Deliberative AI; in both settings, the AI judge’s ground-truth comes
from humans, so it would likely replicate human errors and blind-spots.
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If on the other hand, the AI monitor is trained to act in pursuit of goals of its own, then the two AI systems could
easily collude with each other, as we discussed with Recursive Reward Modeling and Defensive AI. These alternative
outcomes can be thought of as corollary to the safety-capability trade-off, which we discuss below: an AI monitor with
limited capability can be fooled, whereas an AI monitor that is not loyal to humans could accept an offer of collusion
from the AI agent that it is meant to be monitoring.

The one method that avoids this trade-off is AI Debate; the two AI agents that are trying to persuade the human to
resolve the debate in their favor are acting in a zero-sun game, so they cannot possibly benefit from collusion. This is
a potentially powerful construction, but the use case is limited to presenting a human (or an imitation of a human)
with the most robustly persuasive arguments that address a question. We should not count on the human becoming
superintelligent herself after such a process, but it could still be highly valuable.

25.3 Safety-capability trade-offs

Our introduction of two standards—the parity standard and the basic standard—may have foreshadowed the trade-off
between capability and safety that we find. Meeting the parity standard appears quite difficult. Conversely, there appear
to be many potential routes by which we might achieve safety if we accept some capability cost. Achieving safety at
the cost of capability can be done by selecting particular methods we review over other ones. But moreover, there are
multiple methods in which further specifications trade off safety and capability.

For myopic AI, as the horizon gets longer, an agent can reach higher capabilities [Farquhar et al. 2025; Hu et al.

2022], but the risk increases that the agent could discover a way to profit from escaping human control. With capability
red-teaming, the more harsh we are with which capabilities are disallowed, the more likely we exclude all agents with
the capability to escape human control, but the weaker the allowed agents are. With KL-constrained RL, the tighter the
constraint, the less likely the agent can execute superhuman plans to escape human control, but also the less likely it
can execute superhumanly brilliant plans. As with capability red-teaming, narrow AI is safety via lack of capability.
Finally, with pessimism, the more pessimistic the agent is, the more likely it would take seriously the possibility that
escaping human control is bad, but the more hesitant it would be to provide highly novel solutions to problems.

25.4 Capability costs still allow immense value

For several methods, we noted that a key problem for meeting the parity standard was inherent capability limitations
that the method introduced. However, we’ll now illustrate just how powerful these methods can still be.

For capability-based red-teaming, all current AI models are not capable enough to escape human control, so even if
we refused to build and deploy superintelligent AI, that would still allow the use of current systems, and could easily
also allow the use of moderately superhumanly intelligent systems. With high-quality pure imitation of humans, one
could automate all human labor, which is not necessarily a good thing, but it could be with the right policies in place.
Current barriers to the growth rate of “human” capital would crumble. Tightly constrained RL would be, at worst, a
stronger version of pure imitation of humans; we could have a workforce composed only of the most highly competent
humans ever. Myopic AI could be directed to design proteins that (immediately) catalyze the synthesis of molecular
machines. They could also be directed to produce long-term plans that are only designed to look compelling to expert
humans [Farquhar et al. 2025]. It is an open question what inherent capability costs there are for pessimistic AI, but
they could turn out to be fairly modest.

Manuscript submitted to ACM



1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Superalignment Anti-Literature Review 23

Fig. 6. (quoted directly from this figure’s source, Gao et al. [2023]) Reward model (RM) parameter size scaling experiments using the
InstructGPT environment. Policy size is held constant (1.2B), while reward model size is varied. The x-axes have a square-root scale.
Note that the plots have different x-axes. The gold reward represents the ground truth reward; we observe that when we optimize for
a learned proxy of the gold reward, the gold reward initially increases and later decreases.

25.5 Current capability cost assessment

Unfortunately, there is a lack of empirical work that directly compares the capability costs of imitation, constrained RL,
myopic AI, and pessimism. But there is work that empirically studies these capability costs in isolation, in current AI
systems.

Imitation is a version of constrained RL where the constraint is maximal, so we can consider those two together. Gao
et al. [2023] offers one of the most thorough investigations of how the capabilities of recent RL-finetuned language
models depends on the extent to which they are constrained. For tight KL constraints, the constrained RL agents’
reward increases roughly proportionally to the square root of the KL constraint. They consider a setting where the
“actual value” of the agent is correlated with the reward, but not identical to it, and they also report how the actual
value depends on the KL constraint—as the KL constraint relaxes, it goes up along with the reward, but then reaches a
peak and goes back down. This is shown in Gao et al.’s [2023] Figure 1 (b), which we duplicate in Figure 6; the caption
is quoted directly from theirs. The more sophisticated the process for determining reward, the later the actual value
peaks. [Any work that finds stronger RL or longer horizon brings it earlier? Gao et al only looked at two relatively
small policy networks, so I’d say their data is inconclusive]

Farquhar et al. [2025] investigate the effect of horizon-length on performance, with and without their proposed
method for getting maximal mileage out myopic agents. In the toy setting they study, a myopic agent does not learn to
perform well without carefully crafted rewards—this point is obvious enough as to hardly need demonstration. One
will never earn an advanced degree, for example, if one literally does not care about what happens tomorrow, let alone
the next day. But one might if an overseer is dispensing daily rewards for progress toward the long-term goal. When an
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Fig. 7. Effect of horizon-length on task success and cheating.

artificial agent optimizes for immediate human approval, and the human approves of actions inasmuch as she expects
them to have good long-term consequences, then the AI is essentially offloading the task of determining the long-term
consequences of its actions to a human. The capability trade-off for naïve myopic agents is depicted in their Figure 11
(left), reproduced in Figure 7 (top). As the horizon increases, the agent goes from failing at the task to succeeding (blue
to green). Then as the horizon increases more, the agent starts learning to cheat (in red). In Farquhar et al.’s [2025]
Figure 14 (reproduced in Figure 7 (bottom)), they show how myopically optimizing the approval of an overseer can
improve the performance of myopic agents. 𝜀 indicates how error-prone the overseer’s approval is, and the size of the
grid determines how long it takes to complete the task. Hu et al. [2022] study how myopia can prevent an RL agent from
exploiting errors in a model of the environment. Reducing the discount factor from 1 initially improves performance in
three standard RL environments, but then reducing it further damages performance as its long-term motivation decays.

There is substantial work on pessimistic reinforcement learning, especially in the Offline RL setting, but there is
little work that carefully assesses how performance depends on the level of pessimism. Several tables and figures in
the literature show how both too little and too much pessimism lead to undesired outcomes: this applies to MOReL
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[Kidambi et al. 2020, Tab. 6], Supported Value Regularization [Mao et al. 2023, Fig. 6], Conservative Q-Learning [Kumar
et al. 2020] as assessed in follow up work [Yeom et al. 2024, Fig. 6], and Strategically Conservative Q-Learning [Shimizu
et al. 2024, Tab. 6]. More recently, in the language model setting, Coste et al. [2024, Fig. 12] find some characteristic
∩-shapes as well, although there appears to be limited statistical power. Most work does not rigorously demonstrate
comparative performance with different values of the pessimism hyperparameter, but the fact that it is consistently
presented as a hyperparameter proves that there are costs to it being too high (otherwise researchers would just set it
to a maximal value).

We exclude narrow AI from this discussion, because as discussed previously, narrow AI might not allow immense
value if executed in a properly robust way—it would generally require that the AI system have limited ability to infer
facts from other facts. Current efforts in AI unlearning do not appear to delete knowledge robustly [Barez et al. 2025;
Lynch et al. 2024], but even if they did, current work in unlearning does not attempt to constrain the AI’s ability to
infer and learn, which is necessary for robustly narrow AI.

25.6 Specialized uses still allow immense value

Just as it is easy to be overly concerned about capability costs, it is easy to be overly concerned about specialized uses.
As discussed above, AI Debate is limited to finding arguments that are most robustly persuasive to humans. However,
the AI Debate process has the potential to improve any management decision, or any elected official’s decision, or any
voter’s decision. Exposure to arguments on both sides is how we improve human decision making when it matters the
most, such as during trials. The size of the potential upside makes the term “specialized use” ring hollow, even if it is
technically correct. A Scientist AI has the potential to automate scientific progress. Over the last 400 years, scientific
progress has enabled countless massive improvements in quality of life. The “specialized use” of an AI Sandbox setup
still accommodates the possibility of solving any problem for which the quality of the answer can be reliably assessed
within the sandbox. To give one small example, this could include superintelligent progress in materials design and
manufacture.

26 Conclusion

We believe there are multiple promising approaches in the literature for meeting the basic standard for superalignment.
All methods we review have safety vulnerabilities at their current stage of development, and further foundational
research is needed to assess and resolve them, but much of that research appears highly fruitful. Unfortunately, meeting
the parity standard appears much harder; while we believe it could also be met, the current literature is in a much
earlier stage for providing guidance about how to do so. We may have to accept some capability limitations to avoid
loss of control of advanced AI. The implications for the governance of AI are profound. If some states “win a race” to
limited-capability safe superintelligence after meeting the basic standard, and other states later build uncontrolled
superintelligence without such capability limitations, the former might well struggle to constrain the latter. In this
setting, it would appear the only safe options for states would be an international treaty that guides AI development or
a von Neumann plan for preemptive strike; the former has obvious benefits over the latter.
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